Copied to
clipboard

G = C42.179D6order 192 = 26·3

179th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.179D6, C6.852+ 1+4, C4⋊Q817S3, (C4×D12)⋊52C2, C4⋊C4.222D6, C12⋊D441C2, (C2×Q8).113D6, (C2×C6).278C24, D6⋊C4.53C22, C12.141(C4○D4), C2.89(D46D6), C12.23D428C2, (C2×C12).640C23, (C4×C12).219C22, C4.42(Q83S3), (C6×Q8).145C22, (C2×D12).275C22, C4⋊Dic3.387C22, C22.299(S3×C23), (C22×S3).123C23, C35(C22.49C24), (C4×Dic3).167C22, (C2×Dic3).275C23, (C3×C4⋊Q8)⋊20C2, C4⋊C47S344C2, C6.125(C2×C4○D4), (S3×C2×C4).151C22, C2.33(C2×Q83S3), (C3×C4⋊C4).221C22, (C2×C4).603(C22×S3), SmallGroup(192,1293)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.179D6
C1C3C6C2×C6C22×S3S3×C2×C4C4⋊C47S3 — C42.179D6
C3C2×C6 — C42.179D6
C1C22C4⋊Q8

Generators and relations for C42.179D6
 G = < a,b,c,d | a4=b4=1, c6=b2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b, dcd-1=a2c5 >

Subgroups: 640 in 236 conjugacy classes, 99 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C42⋊C2, C4×D4, C4⋊D4, C4.4D4, C4⋊Q8, C4×Dic3, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, S3×C2×C4, C2×D12, C6×Q8, C22.49C24, C4×D12, C4⋊C47S3, C12⋊D4, C12.23D4, C3×C4⋊Q8, C42.179D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, Q83S3, S3×C23, C22.49C24, D46D6, C2×Q83S3, C42.179D6

Smallest permutation representation of C42.179D6
On 96 points
Generators in S96
(1 21 86 47)(2 48 87 22)(3 23 88 37)(4 38 89 24)(5 13 90 39)(6 40 91 14)(7 15 92 41)(8 42 93 16)(9 17 94 43)(10 44 95 18)(11 19 96 45)(12 46 85 20)(25 65 76 50)(26 51 77 66)(27 67 78 52)(28 53 79 68)(29 69 80 54)(30 55 81 70)(31 71 82 56)(32 57 83 72)(33 61 84 58)(34 59 73 62)(35 63 74 60)(36 49 75 64)
(1 52 7 58)(2 59 8 53)(3 54 9 60)(4 49 10 55)(5 56 11 50)(6 51 12 57)(13 31 19 25)(14 26 20 32)(15 33 21 27)(16 28 22 34)(17 35 23 29)(18 30 24 36)(37 80 43 74)(38 75 44 81)(39 82 45 76)(40 77 46 83)(41 84 47 78)(42 79 48 73)(61 86 67 92)(62 93 68 87)(63 88 69 94)(64 95 70 89)(65 90 71 96)(66 85 72 91)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 35 92 80)(2 79 93 34)(3 33 94 78)(4 77 95 32)(5 31 96 76)(6 75 85 30)(7 29 86 74)(8 73 87 28)(9 27 88 84)(10 83 89 26)(11 25 90 82)(12 81 91 36)(13 56 45 65)(14 64 46 55)(15 54 47 63)(16 62 48 53)(17 52 37 61)(18 72 38 51)(19 50 39 71)(20 70 40 49)(21 60 41 69)(22 68 42 59)(23 58 43 67)(24 66 44 57)

G:=sub<Sym(96)| (1,21,86,47)(2,48,87,22)(3,23,88,37)(4,38,89,24)(5,13,90,39)(6,40,91,14)(7,15,92,41)(8,42,93,16)(9,17,94,43)(10,44,95,18)(11,19,96,45)(12,46,85,20)(25,65,76,50)(26,51,77,66)(27,67,78,52)(28,53,79,68)(29,69,80,54)(30,55,81,70)(31,71,82,56)(32,57,83,72)(33,61,84,58)(34,59,73,62)(35,63,74,60)(36,49,75,64), (1,52,7,58)(2,59,8,53)(3,54,9,60)(4,49,10,55)(5,56,11,50)(6,51,12,57)(13,31,19,25)(14,26,20,32)(15,33,21,27)(16,28,22,34)(17,35,23,29)(18,30,24,36)(37,80,43,74)(38,75,44,81)(39,82,45,76)(40,77,46,83)(41,84,47,78)(42,79,48,73)(61,86,67,92)(62,93,68,87)(63,88,69,94)(64,95,70,89)(65,90,71,96)(66,85,72,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,35,92,80)(2,79,93,34)(3,33,94,78)(4,77,95,32)(5,31,96,76)(6,75,85,30)(7,29,86,74)(8,73,87,28)(9,27,88,84)(10,83,89,26)(11,25,90,82)(12,81,91,36)(13,56,45,65)(14,64,46,55)(15,54,47,63)(16,62,48,53)(17,52,37,61)(18,72,38,51)(19,50,39,71)(20,70,40,49)(21,60,41,69)(22,68,42,59)(23,58,43,67)(24,66,44,57)>;

G:=Group( (1,21,86,47)(2,48,87,22)(3,23,88,37)(4,38,89,24)(5,13,90,39)(6,40,91,14)(7,15,92,41)(8,42,93,16)(9,17,94,43)(10,44,95,18)(11,19,96,45)(12,46,85,20)(25,65,76,50)(26,51,77,66)(27,67,78,52)(28,53,79,68)(29,69,80,54)(30,55,81,70)(31,71,82,56)(32,57,83,72)(33,61,84,58)(34,59,73,62)(35,63,74,60)(36,49,75,64), (1,52,7,58)(2,59,8,53)(3,54,9,60)(4,49,10,55)(5,56,11,50)(6,51,12,57)(13,31,19,25)(14,26,20,32)(15,33,21,27)(16,28,22,34)(17,35,23,29)(18,30,24,36)(37,80,43,74)(38,75,44,81)(39,82,45,76)(40,77,46,83)(41,84,47,78)(42,79,48,73)(61,86,67,92)(62,93,68,87)(63,88,69,94)(64,95,70,89)(65,90,71,96)(66,85,72,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,35,92,80)(2,79,93,34)(3,33,94,78)(4,77,95,32)(5,31,96,76)(6,75,85,30)(7,29,86,74)(8,73,87,28)(9,27,88,84)(10,83,89,26)(11,25,90,82)(12,81,91,36)(13,56,45,65)(14,64,46,55)(15,54,47,63)(16,62,48,53)(17,52,37,61)(18,72,38,51)(19,50,39,71)(20,70,40,49)(21,60,41,69)(22,68,42,59)(23,58,43,67)(24,66,44,57) );

G=PermutationGroup([[(1,21,86,47),(2,48,87,22),(3,23,88,37),(4,38,89,24),(5,13,90,39),(6,40,91,14),(7,15,92,41),(8,42,93,16),(9,17,94,43),(10,44,95,18),(11,19,96,45),(12,46,85,20),(25,65,76,50),(26,51,77,66),(27,67,78,52),(28,53,79,68),(29,69,80,54),(30,55,81,70),(31,71,82,56),(32,57,83,72),(33,61,84,58),(34,59,73,62),(35,63,74,60),(36,49,75,64)], [(1,52,7,58),(2,59,8,53),(3,54,9,60),(4,49,10,55),(5,56,11,50),(6,51,12,57),(13,31,19,25),(14,26,20,32),(15,33,21,27),(16,28,22,34),(17,35,23,29),(18,30,24,36),(37,80,43,74),(38,75,44,81),(39,82,45,76),(40,77,46,83),(41,84,47,78),(42,79,48,73),(61,86,67,92),(62,93,68,87),(63,88,69,94),(64,95,70,89),(65,90,71,96),(66,85,72,91)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,35,92,80),(2,79,93,34),(3,33,94,78),(4,77,95,32),(5,31,96,76),(6,75,85,30),(7,29,86,74),(8,73,87,28),(9,27,88,84),(10,83,89,26),(11,25,90,82),(12,81,91,36),(13,56,45,65),(14,64,46,55),(15,54,47,63),(16,62,48,53),(17,52,37,61),(18,72,38,51),(19,50,39,71),(20,70,40,49),(21,60,41,69),(22,68,42,59),(23,58,43,67),(24,66,44,57)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4I4J···4Q6A6B6C12A···12F12G12H12I12J
order12222222344444···44···466612···1212121212
size111112121212222224···46···62224···48888

39 irreducible representations

dim11111122222444
type++++++++++++
imageC1C2C2C2C2C2S3D6D6D6C4○D42+ 1+4Q83S3D46D6
kernelC42.179D6C4×D12C4⋊C47S3C12⋊D4C12.23D4C3×C4⋊Q8C4⋊Q8C42C4⋊C4C2×Q8C12C6C4C2
# reps12444111428142

Matrix representation of C42.179D6 in GL6(𝔽13)

1200000
0120000
001000
000100
000013
0000812
,
1200000
0120000
005000
003800
00001210
000051
,
12120000
100000
008800
000500
0000811
000005
,
12120000
010000
005000
000500
000010
0000812

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,3,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,3,0,0,0,0,0,8,0,0,0,0,0,0,12,5,0,0,0,0,10,1],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,0,8,5,0,0,0,0,0,0,8,0,0,0,0,0,11,5],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,8,0,0,0,0,0,12] >;

C42.179D6 in GAP, Magma, Sage, TeX

C_4^2._{179}D_6
% in TeX

G:=Group("C4^2.179D6");
// GroupNames label

G:=SmallGroup(192,1293);
// by ID

G=gap.SmallGroup(192,1293);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,387,100,675,570,185,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^5>;
// generators/relations

׿
×
𝔽